Model Question Paper

II P.U.C MATHEMATICS (35)

Time : 3 hours 15 minute

Max. Marks: 100

Instructions :

- 1) The question paper has five parts namely A, B, C, D and E. Answer all the parts.
- 2) Part A has 10 Multiple choice questions, 5 Fill in the blanks and 5 Very Short Answer questions of 1 mark each.
- 3) Part A should be answered continuously at one or two pages of Answer sheet and Only first answer is considered for the marks in subsection I and II of Part A.
- 4) Use the graph sheet for question on linear programming in PART E.

PART A

I. Answer ALL the Multiple Choice Questions

 $10 \times 1 = 10$

- 1. The identity element for the binary operation * if a * b = $\frac{ab}{4}$, \forall a, b \in Q (A) 0 (B) 4 (C) 1 (D) not exist.
- 2. If $\cot^{-1} x = y$, then

(A)
$$0 \le y \le \pi$$
 (B) $0 < y < \pi$ (C) $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$ (D) $-\frac{\pi}{2} < y < \frac{\pi}{2}$

3. For 2 × 2 matrix
$$A = [a_{ij}]$$
 whose elements are given by $a_{ij} = \frac{i}{i}$ then A is equal to

- $A) \begin{bmatrix} 2 & 3 \\ \frac{1}{2} & \frac{9}{2} \end{bmatrix} \qquad B) \begin{bmatrix} \frac{1}{2} & 1 \\ 2 & \frac{1}{2} \end{bmatrix} \qquad C) \begin{bmatrix} 1 & \frac{1}{2} \\ 2 & 1 \end{bmatrix} \qquad D) \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$
- 4. If $\begin{vmatrix} 3 & x \\ x & 1 \end{vmatrix} = \begin{vmatrix} 3 & 2 \\ 4 & 1 \end{vmatrix}$ then the value of x is equal to (A) 2 (B) 4 (C) 8 (D) $\pm 2\sqrt{2}$. 5. Left hand derivative of f(x) = |x| at x = 0 is. (A) 1 (B) -1 (C) 0 (D)does not exist.
- 6. $\int e^x \left(\frac{1}{x} \frac{1}{x^2}\right) dx =$ (A) $e^x + c$ (B) $\frac{e^x}{x} + c$ (C) $\frac{e^x}{x^2} + c$ (D) $\frac{-e^x}{x} + c$

7. The *projection* of the vector \overrightarrow{AB} on the directed line *l*, if angle $\theta = \pi$ will be.

- (A) Zero vector. (B) \overrightarrow{AB} (C) \overrightarrow{BA} (D) Unit vector.
- 8. The equation of xy- plane is
 - (A) x = 0 (B) y = 0 (C) x = 0 and y = 0 (D) z = 0

9. The corner points of the feasible region determined by the following system of linear inequalities: 2x + y ≤ 10, x + 3y ≤ 15, x, y ≥ 0 are (0, 0), (5, 0), (3, 4) and (0, 5). Let Z = ax + by, where a, b > 0. Condition on a and b so that the maximum of Z occurs at both (3, 4) and (0, 5) is

(A) a = b (B) a = 2b (C) a = 3b (D) b = 3a10.If P(A) = $\frac{1}{2}$, P (B) = 0, then P (A | B) is (A) 0 (B) $\frac{1}{2}$ (C) not defined (D) 1

- **II.** Fill in the blanks by choosing the appropriate answer from those given in the bracket. $(\frac{5}{2}, \frac{1}{36}, \frac{1}{3}, 0, 2)$ $5 \times 1 = 5$
- 11. For a square matrix A in matrix equation AX = B. If |A| = 0 and $(adj A) B \neq 0$, then there exists solution.
- 12. The order of the differential equation. $2x^2 \left(\frac{d^2y}{dx^2}\right) 3\left(\frac{dy}{dx}\right) + y$ is
- 13. Sum of the intercepts cut off by the plane 2x + y z = 5 is
- 14. The slope of the normal to the curve $y = 2x^2 3 \sin x$ at x = 0 is
- 15. The probability of obtaining an even prime number on each die, when a pair of dice is rolled is.....

III. Answer all the following questions

- 16. Define a bijective function.
- 17. Find the derivative of the function sec($tan \sqrt{x}$) with respect to x.
- 18. Define feasible solutions in a linear programming problem.

19. Find $\int \frac{1-\sin x}{\cos^2 x} dx$.

20. Define Negative of a Vector.

PART B

Answer any NINE questions:

- 21. Find *gof* and *fog*, if $f: R \to R$ and $g: R \to R$ are given by $g(x) = x^{\frac{1}{3}}$ and $f(x) = 8x^3$.
- 22. Prove that $\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$, $x \in R$.
- 23. If $\sin\left\{\sin^{-1}\frac{1}{5} + \cos^{-1}x\right\} = 1$, find x.

Page 3/9

 $5 \times 1 = 5$

 $9 \times 2 = 18$

- 24. Find the area of the triangle whose vertices are (2,7),(1,1) and (10,8) using determinants.
- 25. Find $\frac{dy}{dx}$, if $2x + 3y = \sin x$.
- 26. If $y = x^{\sin x}$, x > 0, find $\frac{dy}{dx}$.
- 27. Find the local maximum value of the function $g(x) = x^3 3x$.
- 28. Evaluate $\int \sin 3x \cos 4x \, dx$.

29. Evaluate
$$\int_{0}^{\pi/2} \cos 2x \, dx$$
.

- 30. Form the differential equation representing the family of curves y = mx, where, *m* is arbitrary constant.
- 31. Find the area of a triangle having the points A(1, 1, 1), B(1, 2, 3) and C(2, 3, 1) as its vertices.
- 32. Find a vector in the direction of the $\vec{a} = \hat{i} 2\hat{j}$ that has magnitude 7 units.
- 33. Find the angle between the line $\frac{x+1}{2} = \frac{y}{3} = \frac{z-3}{6}$ and the plane 10x+2y-11z=3.
- 34. Find the probability distribution of number of heads in two tosses of a coin.

PART C

Answer any NINE questions:

- 35. Show that the relation R in R defined as $R = \{(a,b) : a \le b\}$, is reflexive and transitive but not symmetric.
- 36. Solve: $\tan^{-1}\left(\frac{x-1}{x-2}\right) + \tan^{-1}\left(\frac{x+1}{x+2}\right) = \frac{\pi}{4}$.
- 37. Express $\begin{bmatrix} 3 & 5 \\ 1 & -1 \end{bmatrix}$ as the sum of a symmetric and skew symmetric matrices.
- 38. If $y = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$, 0 < x < 1 then find $\frac{dy}{dx}$.
- 39. Verify Rolle's theorem for the function $f(x) = x^2 + 2x 8$, $x \in [-4, 2]$.
- 40. Find the intervals in which the function f given by $f(x) = 4x^3 6x^2 72x + 30$ is (i) strictly increasing; (ii) strictly decreasing.
- 41. Find $\int x \cos x \, dx$.

 $9 \times 3 = 27$

- 42. Find $\int \frac{x}{(x+1)(x+2)} dx$.
- 43. Find the area of the region bounded by the curve $y^2 = x$ and the lines x=1, x=4 and the x-axis in the first quadrant.
- 44. Find the equation of the curve passing through the point (-2, 3), given that the slope of the tangent to the curve at any point (*x*, *y*) is $\frac{2x}{y^2}$.
- 45. For any three vectors \vec{a}, \vec{b} and \vec{c} prove that $\begin{bmatrix} \vec{a} + \vec{b} & \vec{b} + \vec{c} & \vec{c} + \vec{d} \end{bmatrix} = 2 \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$.
- 46. If \vec{a} , \vec{b} and \vec{c} are three unit vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ find the value of $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$.
- 47. Find the vector equation of the plane passing through the intersection of the planes 3x y + 2z 4 = 0 and x + y + z 3 = 0 and the point (2, 2, 1).
- 48.A man is known to speak truth 3 out of 4 times. He throws a die and reports that it is a six. Find the probability that it is actually a six.

PART D

Answer any FIVE questions:

49. Let $f: N \to R$ be a function defined as $f(x) = 4x^2 + 12x + 15$. Show that $f: N \to S$, where S is the range of function f, is invertible. Find the inverse of f.

50. If $A = \begin{bmatrix} 0 & 6 & 7 \\ -6 & 0 & 8 \\ 7 & -8 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{bmatrix}$ and $C = \begin{bmatrix} 2 \\ -2 \\ 3 \end{bmatrix}$, calculate AB, AC and A(B + C). Verify

that A(B+C) = AB + AC.

- 51. Solve the following system of equations by matrix method: x - y + z = 4; x + y + z = 2 and 2x + y - 3z = 0.
- 52. If $y = 3\cos(\log x) + 4\sin(\log x)$ show that $x^2y_2 + xy_1 + y = 0$.
- 53. A ladder 5 m long is leaning against a wall. The bottom of the ladder is pulled along the ground, away from the wall at the rate of 2 cm/sec. How fast is its height on the wall decreasing when the foot of the ladder is 4m away from the wall?
- 54. Find the integral of $\frac{1}{\sqrt{a^2 x^2}}$ with respect to x and evaluate $\int \frac{dx}{\sqrt{7 6x x^2}}$.
- 55. Find the smaller area enclosed by the circle $x^2 + y^2 = 4$ and the line x + y = 2.

 $5 \times 5 = 25$

56. Find the particular solution of the differential equation $\frac{dy}{dx} + y \cot x = 4x \cdot \csc x$, $x \neq 0$,

given that y = 0 when $x = \frac{\pi}{2}$.

- 57. Derive the equation of the line in space passing through two given points both in vector and Cartesian form.
- 58. If a fair coin is tossed 10 times, find the probability of
 - (i) exactly six heads (ii) at least six heads.

PART E

Answer the following questions:

59. Maximize; z = 4x + y subject to constraints $x + y \le 50$, $3x + y \le 90$, $x \ge 0$, $y \ge 0$ by graphical method.

OR

Prove that
$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$
 and hence evaluate $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{1+\sqrt{\tan x}} dx$. 6

60. Find the value of k so that the function $f(x) = \begin{cases} kx+1, & \text{if } x \le 5 \\ 3x-5, & \text{if } x > 5 \end{cases}$, at x = 5 is a continuous function.

OR

Prove that $\begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} = (a-b)(b-c)(c-a).$

4