Model Question Paper

II P.U.C MATHEMATICS (35)

Time : $\mathbf{3}$ hours 15 minute Max. Marks : 100

Instructions:

1) The question paper has five parts namely A, B, C, D and E. Answer all the parts.
2) Part A has 10 Multiple choice questions, 5 Fill in the blanks and 5 Very Short Answer questions of 1 mark each.
3) Part A should be answered continuously at one or two pages of Answer sheet and Only first answer is considered for the marks in subsection I and II of Part A.
4) Use the graph sheet for question on linear programming in PART E.

PART A

I. Answer ALL the Multiple Choice Questions

$$
10 \times 1=10
$$

1. The identity element for the binary operation $*$ if $\mathrm{a} * \mathrm{~b}=\frac{a b}{4}, \forall \mathrm{a}, \mathrm{b} \in \mathrm{Q}$
(A) 0
(B) 4
(C) 1
(D) not exist.
2. If $\cot ^{-1} x=y$, then
(A) $0 \leq y \leq \pi$
(B) $0<y<\pi$
(C) $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$
(D) $-\frac{\pi}{2}<y<\frac{\pi}{2}$
3. For 2×2 matrix $A=\left[a_{i j}\right]$ whose elements are given by $a_{i j}=\frac{i}{j}$ then A is equal to
A) $\left[\begin{array}{cc}2 & 3 \\ \frac{1}{2} & \frac{9}{2}\end{array}\right]$
В) $\left[\begin{array}{ll}\frac{1}{2} & 1 \\ 2 & \frac{1}{2}\end{array}\right]$
C) $\left[\begin{array}{ll}1 & \frac{1}{2} \\ 2 & 1\end{array}\right]$
D) $\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$
4. If $\left|\begin{array}{ll}3 & x \\ x & 1\end{array}\right|=\left|\begin{array}{ll}3 & 2 \\ 4 & 1\end{array}\right|$ then the value of x is equal to
(A) 2
(B) 4
(C) 8
(D) $\pm 2 \sqrt{2}$.
5. Left hand derivative of $f(x)=|x|$ at $\mathrm{x}=0$ is.
(A) 1
(B) -1
(C) 0
(D)does not exist.
6. $\int e^{x}\left(\frac{1}{x}-\frac{1}{x^{2}}\right) d x=$
(A) $e^{x}+c$
(B) $\frac{e^{x}}{x}+c$
(C) $\frac{e^{x}}{x^{2}}+c$
(D) $\frac{-e^{x}}{x}+c$
7. The projection of the vector $\overrightarrow{A B}$ on the directed line l, if angle $\theta=\pi$ will be.
(A) Zero vector.
(B) $\overrightarrow{A B}$
(C) $\overrightarrow{B A}$
(D) Unit vector.
8. The equation of $x y$ - plane is
(A) $x=0$
(B) $y=0$
(C) $x=0$ and $y=0$
(D) $z=0$
9. The corner points of the feasible region determined by the following system of linear inequalities: $2 x+y \leq 10, x+3 y \leq 15, x, y \geq 0$ are $(0,0),(5,0),(3,4)$ and $(0,5)$. Let $Z=a x+b y$, where $a, b>0$. Condition on a and b so that the maximum of Z occurs at both $(3,4)$ and $(0,5)$ is
(A) $a=b$
(B) $a=2 b$
(C) $a=3 b$
(D) $b=3 a$
10.If $\mathrm{P}(\mathrm{A})=\frac{1}{2}, \mathrm{P}(\mathrm{B})=0$, then $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$ is
(A) 0
(B) $\frac{1}{2}$
(C) not defined
(D) 1
II. Fill in the blanks by choosing the appropriate answer from those given in the bracket.
$\left(\frac{5}{2}, \frac{1}{36}, \frac{1}{3}, 0,2\right)$
$5 \times 1=5$
10. For a square matrix A in matrix equation $\mathrm{AX}=\mathrm{B}$. If $|\mathrm{A}|=0$ and $(\operatorname{adj} \mathrm{A}) \mathrm{B} \neq 0$, then there exists \qquad solution.
11. The order of the differential equation. $2 x^{2}\left(\frac{d^{2} y}{d x^{2}}\right)-3\left(\frac{d y}{d x}\right)+y$ is
12. Sum of the intercepts cut off by the plane $2 x+y-z=5$ is \qquad
13. The slope of the normal to the curve $y=2 x^{2}-3 \sin x$ at $x=0$ is \qquad
14. The probability of obtaining an even prime number on each die, when a pair of dice is rolled is.....
III. Answer all the following questions
15. Define a bijective function.
16. Find the derivative of the function $\sec (\tan \sqrt{x})$ with respect to x .
17. Define feasible solutions in a linear programming problem.
18. Find $\int \frac{1-\sin x}{\cos ^{2} x} d x$.
19. Define Negative of a Vector.

PART B

Answer any NINE questions:
21. Find gof and fog, if $f: R \rightarrow R$ and $g: R \rightarrow R$ are given by $g(x)=x^{\frac{1}{3}}$ and $f(x)=8 x^{3}$.
22. Prove that $\tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}, x \in R$.
23. If $\sin \left\{\sin ^{-1} \frac{1}{5}+\cos ^{-1} x\right\}=1$, find x.
24. Find the area of the triangle whose vertices are $(2,7),(1,1)$ and $(10,8)$ using determinants.
25. Find $\frac{d y}{d x}$, if $2 x+3 y=\sin x$.
26. If $y=x^{\sin x}, x>0$, find $\frac{d y}{d x}$.
27. Find the local maximum value of the function $g(x)=x^{3}-3 x$.
28. Evaluate $\int \sin 3 x \cos 4 x d x$.
29. Evaluate $\int_{0}^{\pi / 2} \cos 2 x d x$.
30. Form the differential equation representing the family of curves $y=m x$, where, m is arbitrary constant.
31. Find the area of a triangle having the points $\mathrm{A}(1,1,1), \mathrm{B}(1,2,3)$ and $\mathrm{C}(2,3,1)$ as its vertices.
32. Find a vector in the direction of the $\vec{a}=\hat{i}-2 \hat{j}$ that has magnitude 7 units.
33. Find the angle between the line $\frac{x+1}{2}=\frac{y}{3}=\frac{z-3}{6}$ and the plane $10 x+2 y-11 z=3$.
34. Find the probability distribution of number of heads in two tosses of a coin.

PART C

Answer any NINE questions:

$$
9 \times 3=27
$$

35. Show that the relation R in R defined as $R=\{(a, b): a \leq b\}$, is reflexive and transitive but not symmetric.
36. Solve: $\tan ^{-1}\left(\frac{x-1}{x-2}\right)+\tan ^{-1}\left(\frac{x+1}{x+2}\right)=\frac{\pi}{4}$.
37. Express $\left[\begin{array}{cc}3 & 5 \\ 1 & -1\end{array}\right]$ as the sum of a symmetric and skew symmetric matrices.
38. If $y=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right), 0<x<1$ then find $\frac{d y}{d x}$.
39. Verify Rolle's theorem for the function $f(x)=x^{2}+2 x-8, x \in[-4,2]$.
40. Find the intervals in which the function f given by $\mathrm{f}(\mathrm{x})=4 \mathrm{x}^{3}-6 \mathrm{x}^{2}-72 \mathrm{x}+30$ is
(i) strictly increasing; (ii) strictly decreasing.
41. Find $\int x \cos x d x$.
42. Find $\int \frac{x}{(x+1)(x+2)} d x$.
43. Find the area of the region bounded by the curve $y^{2}=x$ and the lines $x=1, x=4$ and the x -axis in the first quadrant.
44. Find the equation of the curve passing through the point $(-2,3)$, given that the slope of the tangent to the curve at any point (x, y) is $\frac{2 x}{y^{2}}$.
45. For any three vectors \vec{a}, \vec{b} and \vec{c} prove that $\left[\begin{array}{lll}\vec{a}+\vec{b} & \vec{b}+\vec{c} & \vec{c}+\vec{d}\end{array}\right]=2\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$.
46. If \vec{a}, \vec{b} and \vec{c} are three unit vectors such that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$ find the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$.
47. Find the vector equation of the plane passing through the intersection of the planes $3 x-y+2 z-4=0$ and $x+y+z-3=0$ and the point $(2,2,1)$.
48.A man is known to speak truth 3 out of 4 times. He throws a die and reports that it is a six. Find the probability that it is actually a six.

PART D

Answer any FIVE questions:

$$
5 \times 5=25
$$

49. Let $f: N \rightarrow R$ be a function defined as $f(x)=4 x^{2}+12 x+15$. Show that $f: N \rightarrow S$, where S is the range of function f, is invertible. Find the inverse of f.
50. If $A=\left[\begin{array}{ccc}0 & 6 & 7 \\ -6 & 0 & 8 \\ 7 & -8 & 0\end{array}\right], B=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0\end{array}\right]$ and $C=\left[\begin{array}{c}2 \\ -2 \\ 3\end{array}\right]$, calculate $A B, A C$ and $A(B+C)$. Verify that $A(B+C)=A B+A C$.
51. Solve the following system of equations by matrix method:
$x-y+z=4 ; \mathrm{x}+y+z=2$ and $2 x+y-3 z=0$.
52. If $y=3 \cos (\log x)+4 \sin (\log x)$ show that $x^{2} y_{2}+x y_{1}+y=0$.
53. A ladder 5 m long is leaning against a wall. The bottom of the ladder is pulled along the ground, away from the wall at the rate of $2 \mathrm{~cm} / \mathrm{sec}$. How fast is its height on the wall decreasing when the foot of the ladder is 4 m away from the wall?
54. Find the integral of $\frac{1}{\sqrt{a^{2}-x^{2}}}$ with respect to x and evaluate $\int \frac{d x}{\sqrt{7-6 x-x^{2}}}$.
55. Find the smaller area enclosed by the circle $x^{2}+y^{2}=4$ and the line $x+y=2$.
56. Find the particular solution of the differential equation $\frac{d y}{d x}+y \cot x=4 x \cdot \operatorname{cosec} x, x \neq 0$, given that $y=0$ when $x=\frac{\pi}{2}$.
57. Derive the equation of the line in space passing through two given points both in vector and Cartesian form.
58. If a fair coin is tossed 10 times, find the probability of
(i) exactly six heads (ii) at least six heads.

PART E

Answer the following questions:

59. Maximize; $z=4 x+y$ subject to constraints $x+y \leq 50,3 x+y \leq 90, x \geq 0, y \geq 0$ by graphical method.

OR

Prove that $\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$ and hence evaluate $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{1+\sqrt{\tan x}} d x$.
60. Find the value of k so that the function $f(x)=\left\{\begin{array}{ll}k x+1, & \text { if } x \leq 5 \\ 3 x-5, & \text { if } x>5\end{array}\right.$, at $x=5$ is a continuous function.

OR

Prove that $\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|=(a-b)(b-c)(c-a)$.

